Table of Contents
Trig Identities
Reciprocal Identities
These are the ones you use to convert $\sin$, $\cos$, and $\tan$ to $\csc$, $\sec$, and $\cot$ respectively.
- $\sin x = \frac{1}{\csc x}$
- $\cos x = \frac{1}{\sec x}$
- $\tan x = \frac{1}{\cot x}$
The same works vice-versa (e.g. $\csc x = \frac{1}{\sin x}$).
Quotient Identities
These help break down complicated $\tan$ and $\cot$ expressions to $\sin$ and $\cos$.
- $\tan x = \frac{\sin x}{\cos x}$
- $\cot x = \frac{\cos x}{\sin x}$
Pythagorean Identities
There are three essential ones to remember.
- $\sin^2 x + \cos^2 x = 1$
- $1 + \tan^2 x = \sec^2 x$
- $1 + \cot^2 x = \csc^2 x$
You can rearrange these three as see fit to change practically any squared trig function to another (e.g. $\sin^2 x = 1 - \cos^2 x$).
Cofunction Identities
Take a look at this if it doesn't make sense why this works1).
- $\sin(\frac{\pi}{2} - x) = \cos x$
- $\cos(\frac{\pi}{2} - x) = \sin x$
- $\tan(\frac{\pi}{2} - x) = \cot x$
- $\csc(\frac{\pi}{2} - x) = \sec x$
- $\sec(\frac{\pi}{2} - x) = \csc x$
- $\cot(\frac{\pi}{2} - x) = \tan x$
Even/Odd (Parity) Identities
To remember this easier, think that $\cos$ and $\sec$ are the odd ones out2). Otherwise, its just pulling the negative out.
- $\sin -x = -\sin x$
- $\tan -x = -\tan x$
- $\csc -x = -\csc x$
- $\cot -x = -\cot x$
Cos and Sec
- $\cos -x = \cos x$
- $\sec -x = \sec x$
Sum and Difference Formulas
Take a note of the pos/neg sign, the upside down one indicates that it needs to be switched based off whatever the pos/neg sign in the original function is. They keep the same sign if both signs are the same type.
- $\sin(x \pm y) = \sin x\cos y \pm \cos x\sin y$
- $\cos(x \pm y) = \cos x\cos y \mp \sin x\sin y$
- $\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x\tan y}$
Double Angle Formulas
Cosine has alot of variations. Why? I have no fucking clue!
- $\sin 2x = 2\sin x\cos x$
- $\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$
- $\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$
Power-Reducing Formulas
As the title says.
- $\sin^2 x = \frac{1 - \cos 2x}{2}$
- $\cos^2 x = \frac{1 + \cos 2x}{2}$
- $\tan^2 x = \frac{1 - \cos 2x}{1 + \cos 2x}$3)
Half-Angle Formulas
The signs of $\sin \frac{x}{2}$ and $\cos \frac{x}{2}$ depends on the quadrant where $\frac{x}{2}$ lies.
- $\sin \frac{x}{2} = \pm \sqrt \frac{1 - \cos x}{2}$
- $\cos \frac{x}{2} = \pm \sqrt \frac{1 + \cos x}{2}$
- $\tan \frac{x}{2} = \frac{1 - \cos x}{\sin x} = \frac{\sin x}{1 + \cos x}$
Sum-To-Product Fomulas
No damn clue what these are used for, on the sheet so here it goes.
- $\sin x + \sin y = 2\sin(\frac{x + y}{2})\cos(\frac{x - y}{2})$
- $\sin x - \sin y = 2\cos(\frac{x + y}{2})\sin(\frac{x - y}{2})$
- $\cos x + \cos y = 2\cos(\frac{x + y}{2})\cos(\frac{x - y}{2})$
- $\cos x - \cos y = -2\sin(\frac{x + y}{2})\sin(\frac{x - y}{2})$
Product-To-Sum Formulas
Again, i dunno just ctrl-c and ctrl-v.
- $\sin x\sin y = \frac{1}{2}(\cos(x - y) - \cos(x + y))$
- $\cos x\cos y = \frac{1}{2}(\cos(x - y) + \cos(x + y))$
- $\sin x\cos y = \frac{1}{2}(\sin(x + y) + \sin(x - y))$
- $\cos x\sin y = \frac{1}{2}(\sin(x + y) - \sin(x - y))$