Trig Identities
Reciprocal Identities
These are the ones you use to convert $\sin$, $\cos$, and $\tan$ to $\csc$, $\sec$, and $\cot$ respectively.
$\sin x = \frac{1}{\csc x}$
$\cos x = \frac{1}{\sec x}$
$\tan x = \frac{1}{\cot x}$
The same works vice-versa (e.g. $\csc x = \frac{1}{\sin x}$).
Quotient Identities
These help break down complicated $\tan$ and $\cot$ expressions to $\sin$ and $\cos$.
Pythagorean Identities
There are three essential ones to remember.
$\sin^2 x + \cos^2 x = 1$
$1 + \tan^2 x = \sec^2 x$
$1 + \cot^2 x = \csc^2 x$
You can rearrange these three as see fit to change practically any squared trig function to another (e.g. $\sin^2 x = 1 - \cos^2 x$).
Cofunction Identities
Take a look at this if it doesn't make sense why this works1).
$\sin(\frac{\pi}{2} - x) = \cos x$
$\cos(\frac{\pi}{2} - x) = \sin x$
$\tan(\frac{\pi}{2} - x) = \cot x$
$\csc(\frac{\pi}{2} - x) = \sec x$
$\sec(\frac{\pi}{2} - x) = \csc x$
$\cot(\frac{\pi}{2} - x) = \tan x$
Even/Odd (Parity) Identities
To remember this easier, think that $\cos$ and $\sec$ are the odd ones out2). Otherwise, its just pulling the negative out.
$\sin -x = -\sin x$
$\tan -x = -\tan x$
$\csc -x = -\csc x$
$\cot -x = -\cot x$
Cos and Sec
$\cos -x = \cos x$
$\sec -x = \sec x$
Take a note of the pos/neg sign, the upside down one indicates that it needs to be switched based off whatever the pos/neg sign in the original function is. They keep the same sign if both signs are the same type.
$\sin(x \pm y) = \sin x\cos y \pm \cos x\sin y$
$\cos(x \pm y) = \cos x\cos y \mp \sin x\sin y$
$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x\tan y}$
Cosine has alot of variations. Why? I have no fucking clue!
$\sin 2x = 2\sin x\cos x$
$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$
$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$
The signs of $\sin \frac{x}{2}$ and $\cos \frac{x}{2}$ depends on the quadrant where $\frac{x}{2}$ lies.
$\sin \frac{x}{2} = \pm \sqrt \frac{1 - \cos x}{2}$
$\cos \frac{x}{2} = \pm \sqrt \frac{1 + \cos x}{2}$
$\tan \frac{x}{2} = \frac{1 - \cos x}{\sin x} = \frac{\sin x}{1 + \cos x}$
Sum-To-Product Fomulas
No damn clue what these are used for, on the sheet so here it goes.
$\sin x + \sin y = 2\sin(\frac{x + y}{2})\cos(\frac{x - y}{2})$
$\sin x - \sin y = 2\cos(\frac{x + y}{2})\sin(\frac{x - y}{2})$
$\cos x + \cos y = 2\cos(\frac{x + y}{2})\cos(\frac{x - y}{2})$
$\cos x - \cos y = -2\sin(\frac{x + y}{2})\sin(\frac{x - y}{2})$
Again, i dunno just ctrl-c and ctrl-v.
$\sin x\sin y = \frac{1}{2}(\cos(x - y) - \cos(x + y))$
$\cos x\cos y = \frac{1}{2}(\cos(x - y) + \cos(x + y))$
$\sin x\cos y = \frac{1}{2}(\sin(x + y) + \sin(x - y))$
$\cos x\sin y = \frac{1}{2}(\sin(x + y) - \sin(x - y))$