====== Trig Identities ====== ===== Reciprocal Identities ===== These are the ones you use to convert $\sin$, $\cos$, and $\tan$ to $\csc$, $\sec$, and $\cot$ respectively. * $\sin x = \frac{1}{\csc x}$ * $\cos x = \frac{1}{\sec x}$ * $\tan x = \frac{1}{\cot x}$ The same works vice-versa (e.g. $\csc x = \frac{1}{\sin x}$). ===== Quotient Identities ===== These help break down complicated $\tan$ and $\cot$ expressions to $\sin$ and $\cos$. * $\tan x = \frac{\sin x}{\cos x}$ * $\cot x = \frac{\cos x}{\sin x}$ ===== Pythagorean Identities ===== There are three essential ones to remember. * $\sin^2 x + \cos^2 x = 1$ * $1 + \tan^2 x = \sec^2 x$ * $1 + \cot^2 x = \csc^2 x$ You can rearrange these three as see fit to change practically any squared trig function to another (e.g. $\sin^2 x = 1 - \cos^2 x$). ===== Cofunction Identities ===== Take a look at [[https://www.desmos.com/calculator/vqoxhdcrv5|this]] if it doesn't make sense why this works((The period shift by $\frac{\pi}{2}$ lines up $\sin$ with $\cos$, or whatever other pair of trig functions)). * $\sin(\frac{\pi}{2} - x) = \cos x$ * $\cos(\frac{\pi}{2} - x) = \sin x$ * $\tan(\frac{\pi}{2} - x) = \cot x$ * $\csc(\frac{\pi}{2} - x) = \sec x$ * $\sec(\frac{\pi}{2} - x) = \csc x$ * $\cot(\frac{\pi}{2} - x) = \tan x$ ===== Even/Odd (Parity) Identities ===== To remember this easier, think that $\cos$ and $\sec$ are the odd ones out((See the [[math:unit_circle|unit circle]] for why)). Otherwise, its just pulling the negative out. * $\sin -x = -\sin x$ * $\tan -x = -\tan x$ * $\csc -x = -\csc x$ * $\cot -x = -\cot x$ ==== Cos and Sec ==== * $\cos -x = \cos x$ * $\sec -x = \sec x$ ===== Sum and Difference Formulas ===== Take a note of the pos/neg sign, the upside down one indicates that it needs to be switched based off whatever the pos/neg sign in the //original function// is. They keep the same sign if both signs are the same type. * $\sin(x \pm y) = \sin x\cos y \pm \cos x\sin y$ * $\cos(x \pm y) = \cos x\cos y \mp \sin x\sin y$ * $\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x\tan y}$ ===== Double Angle Formulas ===== Cosine has alot of variations. Why? I have no fucking clue! * $\sin 2x = 2\sin x\cos x$ * $\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$ * $\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$ ===== Power-Reducing Formulas ===== As the title says. * $\sin^2 x = \frac{1 - \cos 2x}{2}$ * $\cos^2 x = \frac{1 + \cos 2x}{2}$ * $\tan^2 x = \frac{1 - \cos 2x}{1 + \cos 2x}$((Think back to the quotient identities for this one)) ===== Half-Angle Formulas ===== The signs of $\sin \frac{x}{2}$ and $\cos \frac{x}{2}$ depends on the quadrant where $\frac{x}{2}$ lies. * $\sin \frac{x}{2} = \pm \sqrt \frac{1 - \cos x}{2}$ * $\cos \frac{x}{2} = \pm \sqrt \frac{1 + \cos x}{2}$ * $\tan \frac{x}{2} = \frac{1 - \cos x}{\sin x} = \frac{\sin x}{1 + \cos x}$ ===== Sum-To-Product Fomulas ===== No damn clue what these are used for, on the sheet so here it goes. * $\sin x + \sin y = 2\sin(\frac{x + y}{2})\cos(\frac{x - y}{2})$ * $\sin x - \sin y = 2\cos(\frac{x + y}{2})\sin(\frac{x - y}{2})$ * $\cos x + \cos y = 2\cos(\frac{x + y}{2})\cos(\frac{x - y}{2})$ * $\cos x - \cos y = -2\sin(\frac{x + y}{2})\sin(\frac{x - y}{2})$ ==== Product-To-Sum Formulas ==== Again, i dunno just ctrl-c and ctrl-v. * $\sin x\sin y = \frac{1}{2}(\cos(x - y) - \cos(x + y))$ * $\cos x\cos y = \frac{1}{2}(\cos(x - y) + \cos(x + y))$ * $\sin x\cos y = \frac{1}{2}(\sin(x + y) + \sin(x - y))$ * $\cos x\sin y = \frac{1}{2}(\sin(x + y) - \sin(x - y))$